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Abstract. A reaction kernel, K(j, k) = K(k, j), is studied, for which the Smoluchowski
equations of aggregation ċj = 1

2

∑∞
k,l=1 K(k, l)ckcl [δk+l,j − δk,j −δl,j ] can be solved. It takes

only three values: K(j, k) = K if j and k are both odd, K(j, k) = L if j and k are both even
and K(j, k) = M if j and k have different parities. A considerable simplification over previous
treatments is presented for the general case (K , L and M are three arbitrary positive numbers),
and the time evolution of the concentrations is exhibited in completely explicit form for the (new)
special case L = 4M . In another special case, K = M , the equation for the generating function of
the concentrations can be reduced to quadratures; the analysis of this case, and of the general case,
is postponed to a future paper.

1. Introduction

The kinetics of irreversible aggregation has been the object of much study, because of both the
relevance of the subject for many systems of practical importance as well as for the interesting
mathematical problems that arise in connection with it. Specifically, one is interested in the
following process:

Aj + Ak −→
K(j,k)

Aj+k. (1)

Here Aj denotes an aggregate consisting of j fundamental units (monomers). The process
described in (1) consists of two aggregates Aj and Ak sticking irreversibly to one another
with a reaction rate K(j, k) to form the larger aggregate Aj+k . If we assume that the
probability of encounter between aggregates of sizes j and k is proportional to the product of
the concentrations cj (t) and ck(t) of such aggregates, one is led to the following system of
kinetic equations, called Smoluchowski equations, for these concentrations [1]:

ċj = 1
2

∞∑
k,l=1

K(k, l)ckcl[δj,k+l − δj,k − δj,l]. (2)

Here and below we sometimes omit to indicate explicitly the dependence on the time t . The
superscript dots denote, of course, derivatives with respect to t . The factor 1

2 is conventional, to
account for the double counting. The above equations are a set of coupled nonlinear ordinary
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differential equations (ODEs), which have a unique solution if positive initial conditions cj (0)
are given, such that the moments

Mn(t) ≡
∞∑
j=1

jncj (t) (3)

are initially finite for all integers n [2]. Often, consideration is limited to the ‘monodisperse’
initial condition

cj (0) = δj,1. (4)

We focus below on a slightly more general case. Note that a common factor in the initial
conditions can always be absorbed by appropriately rescaling the concentrations and the time.

The equations given by (2) and (4) have only been solved for a few models. These include
the ‘bilinear’ model

K(k, l) = A + B(k + l) + Ckl (5)

where A, B and C are arbitrary constants (restricted to guarantee the positivity of K(k, l) for
all positive integer values of k and l) [3]. A second, ‘exponential’ model, solved recently [4],
features the kernel

K(k, l) = 2 − qk − ql (6)

where q is an arbitrary real number such that 0 � q < 1. A third model was studied in [5]
and [6]. Some asymptotic results were obtained and others conjectured using a generally
accepted scaling theory. It features a kernelK(j, k)which depends only on the parity of j and
k:

K(d, d) = K K(p, p) = L

K(d, p) = K(p, d) = M
(7)

whereK ,L andM are three positive constants and the arguments d respectively p run over the
odd (dispari), and respectively even (pari) integers. One could replace one of these constants by
unity by appropriately rescaling the time, but we shall not do so, in the interest of transparency.

The physical motivation for this model is somewhat unclear (see, however, [5] for a
justification). It is nevertheless of interest, as some special cases are amenable to exact
treatment. In fact, in [5], the case M = 0 was solved. While this is in fact a fairly
straightforward result, it displayed some surprising features with respect to the generally
accepted scaling theory [7, 8]. Indeed, in [5] it was suggested that this model was a counter-
example to scaling, but it was then correctly pointed out in [9] that this was not really the case.
Moreover, in [6], the case M = (K + L)/2 was solved and various asymptotic results were
presented. In this paper we provide the complete solution of the problem in the special case

L = 4M. (8)

To arrive at this result, we reduce the treatment of the Smoluchowski equations (2) with (7) to a
simpler form than had been done hitherto, thereby opening the prospect of solving the general
case (without any restriction on the three positive constantsK ,L andM , see (7)), at least in the
sense of determining some exact asymptotic results. We also note that the generating function
for the concentrations cj (t) in another special case, K = M , can be evaluated by quadratures.
Further analysis of this second special case and of the general case will be presented separately.

Below we focus on the ‘mono-bi-disperse’ initial condition

cj (0) = αδj,1 +
1 − α

2
δj,2 (9)
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which entails that the total mass of the system (first moment) is unity:

M1(t) = M1(0) =
∞∑
j=1

jcj (t) =
∞∑
j=1

jcj (0) = 1. (10)

The notation used here is the same as in (3), where the moments Mn(t) are defined.
Of course, if α = 0, only even aggregates are present and the model reduces (up to trivial

modifications) to the original Smoluchowski model with a constant kernel, that is (5) with
B = C = 0. The same, of course, happens for any initial condition if

K = L = M = A. (11)

For the purpose of comparison, we end this introductory section by computing from the
well known solution [3] for arbitrary initial conditions, the result of case (11) with initial
conditions (9):

cj (t) = 4

[2 + (1 + α)At]2

j−1∑
k=max([j/2]−1,0)

[
2At

2 + (1 + α)At

]k

×
(

k + 1
2k − j + 2

)
α2k−j+2

(
1 − α

2

)j−k−1

. (12)

2. Reduction of the equations

In the following, we show how (2) with (7) can be reduced to a system of two nonlinear time-
independent ODEs for functions related to the generating functions of the concentrations cj (t)
with j odd and even. We define

D(ζ, t) =
∞∑
j=0

c2j+1(t)ζ
2j+1 d(t) = D(1, t) =

∞∑
j=0

c2j+1(t) (13)

P(ζ, t) =
∞∑
j=1

c2j (t)ζ
2j p(t) = P(1, t) =

∞∑
j=1

c2j (t). (14)

One then finds from (2) and (7) that

∂D

∂t
(ζ, t) = MD(ζ, t)P (ζ, t)−D(ζ, t)[Mp(t) + Kd(t)] (15)

∂P

∂t
(ζ, t) = K

2
[D(ζ, t)]2 +

L

2
[P(ζ, t)]2 − P(ζ, t)[Lp(t) + Md(t)]. (16)

Note that these are ODEs, rather than PDEs; the dependence of the solutions on ζ arises from
the initial conditions, see below. Setting ζ = 1 in these equations, and using (13), (14), one
concludes that the functions d(t) and p(t) satisfy a closed set of equations:

ṗ = K

2
d2 − L

2
p2 −Mpd (17)

ḋ = −Kd2. (18)

These equations are easily solved for d(t) and p(t), but we only need the former:

d(t) = α/(1 + αKt). (19)

To obtain this solution we used the initial condition

d(0) = α (20)
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entailed by (9) and (13). We now note that the right-hand sides of the four ODEs (15)–(18)
are homogeneous of degree two in the four dependent variables, so that one equation can be
eliminated, keeping the three remaining ones autonomous by a time rescaling. We therefore
set

D̃(ζ, θ) = D(ζ, t)/d(t) (21)

P̃ (ζ, θ) = P(ζ, t)/d(t) (22)

p̃(θ) = p(t)/d(t) (23)

with

θ̇ (t) = Kd(t) (24)

entailing, see (19),

θ(t) = ln(1 + αKt) 1 + αKt = eθ . (25)

We thus get

K
∂D̃

∂θ
= MD̃(P̃ − p̃) (26)

K
∂P̃

∂θ
= K

2
D̃2 +

L

2
P̃ 2 + [K −M − Lp̃]P̃ (27)

Kp̃′ = −L

2
p̃2 + (K −M)p̃ +

K

2
. (28)

Here and below the prime denotes differentiation with respect to θ . These equations are
supplemented by the following initial conditions, derived from (9) via (13), (14), (20)–(22):

D̃(ζ, 0) = ζ (29)

P̃ (ζ, 0) = 1 − α

2α
ζ 2 (30)

p̃(θ) = P̃ (1, 0) = 1 − α

2α
. (31)

Since we will need this information below, from (26) we also compute the first derivative of
D̃(ζ, θ) at θ = 0:

∂D̃(ζ, θ)

∂θ

∣∣∣∣∣
θ=0

= M

K
[P̃ (ζ, 0)− p̃(0)]D̃(ζ, 0) = M

K

1 − α

2α
(ζ 3 − ζ ). (32)

We now solve (26) for P̃ (ζ, θ),

P̃ (ζ, θ) = p̃(θ) +
K

M

∂ ln D̃(ζ, θ)

∂θ
(33)

and we insert this expression in (27), obtaining, after some elementary computations,

∂2 ln D̃

∂θ2
= M

2K
(D̃2 − 1) +

L

2M

(
∂ ln D̃

∂θ

)2

+
K −M

K

∂ ln D̃

∂θ
. (34)

Remarkably, this second-order nonlinear ODE, which determines the dependence of D̃(ζ, θ)
on θ , is again autonomous, namely, the function p̃(θ) has completely dropped out (thanks to
the nonlinear ODE it satisfies, see (28)). Let us moreover re-emphasize that (34) is an ODE
rather than a PDE, the dependence of D̃(ζ, θ) on ζ arising only from the initial conditions,
see (29) and (32).
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An additional simplification is achieved by the substitution

D̃(ζ, θ) = [F(ζ, θ)]−2M/L (35)

via which one obtains

F ′′ = aF ′ + b(F − Fc) (36)

where

a = 1 − M

K
b = L

4K
c = 1 − 4M

L
(37)

entailing, of course,

1 − a = b(1 − c). (38)

Note that, in writing (36), we have used the notation introduced above (prime indicates
differentiation with respect to θ ), to emphasize that this differential equation is indeed an
ODE.

The initial conditions for (36) are then given as follows:

F(ζ, 0) = [D̃(ζ, 0)]2/(c−1) (39)

∂F (ζ, θ)

∂θ

∣∣∣∣
θ=0

= 2

c − 1
[D̃(ζ, 0)](3−c)/(c−1) ∂D̃(ζ, θ)

∂θ

∣∣∣∣∣
θ=0

. (40)

The transformation (35) is of course only applicable if L 	= 0. If L = 0, one sets, instead
of (35),

D̃(ζ, θ) = exp[F(ζ, θ)] (41)

and thereby gets

F ′′ = aF ′ +
1 − a

2
[exp(2F)− 1] (42)

with a defined by (37), and with the initial conditions

F(ζ, 0) = ln[D̃(ζ, 0)] (43)

∂F (ζ, θ)

∂θ

∣∣∣∣
θ=0

= [D̃(ζ, 0)]−1 ∂D̃(ζ, θ)

∂θ

∣∣∣∣∣
θ=0

. (44)

3. The special case L = 4M

In the case when L = 4M , entailing c = 0, see (37), (36) reduces to

F ′′ = b(F − 1) + (b − 1)F ′. (45)

This is a linear autonomous ODE, hence immediately solvable. To fix notation, note that this
model has two free parameters: one that sets the overall timescale, which we chose to be K ,
and another dimensionless parameter, which we take to be b. To express the other quantities
in those terms, we use (37), (38). To proceed, we need the initial conditions. We start with the
most general initial conditions, specializing later to the ‘mono-bi-disperse’ case given in (9).
We therefore define

D̃(ζ, 0) = δ(ζ ) P̃ (ζ, 0) = π(ζ ). (46)

The initial conditions for F(ζ, θ) then read (see (39), (40))

F(ζ, 0) = [δ(ζ )]−2 (47)
∂F (ζ, θ)

∂θ

∣∣∣∣
θ=0

= −2b[δ(ζ )]−2[π(ζ )− π(1)]. (48)
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Hence (45) with (47) and (48) yield

F(ζ, θ) = 1 + {[δ(ζ )]2 − 1}β1(θ)− 2d [δ(ζ )]−2 [π(ζ )− π(1)]β2(θ). (49)

Here β1(θ) and β2(θ) are defined as follows:

β1(θ) = beθ + e−bθ

b + 1
= b(1 + αKt) + (1 + αKt)−b

b + 1
(50)

β2(θ) = eθ − e−bθ

b + 1
= 1 + αKt − (1 + αKt)−b

b + 1
. (51)

From (35) and (49) one finds for D̃(ζ, θ) the explicit expression

D̃(ζ, θ) = δ(ζ )

[β1(θ) + 2bπ(1)β2(θ)]1/2

{
1 − 2bπ(ζ )β2(θ) + [β1(θ)− 1][δ(ζ )]2

β1(θ) + 2bπ(1)β2(θ)

}
. (52)

This is too general to obtain a simple formula for the odd concentrations c2j+1(t), so we now
specialize to the initial condition (9). This leads to the following expressions for δ(ζ ) and
π(ζ ), see (29), (30) and (46):

δ(ζ ) = ζ (53)

π(ζ ) = 1 − α

2α
ζ 2. (54)

From this one finally obtains, using (21), the expression

D(ζ, t) = αζ

1 + αKt
[s(t)]−1/2{1 − ζ 2[1 − [s(t)]−1]}−1/2 (55)

where s(t) is given by

s(t) = β1(θ) +
b(1 − α)

α
β2(θ)

= b

α(b + 1)
(1 + αKt) +

(α − 1)b + α

α(b + 1)
(1 + αKt)−b. (56)

The motivation for introducing this function s(t), see (55) and (56), will become clearer below.
Expansion in powers of ζ of the right-hand side of (55) yields immediately, via (13), the

final result for the odd concentrations:

c2j+1(t) = 2−2j

(
2j
j

)
α[s(t)]−1/2

1 + αKt
{1 − [s(t)]−1}j . (57)

Here and in what follows we use the standard notation for the combinatorial symbol so that(
2j
j

)
= (2j)!

(j !)2
. (58)

To find the expression for P(ζ, t) we use (33), which yields, using (21) and (23),

P(ζ, t) = d(t)p̃(θ) +
d(t)

b

∂ ln D̃(ζ, θ)

∂θ

= d(t)p̃(θ) +
1

bK

∂

∂t
ln

[
D(ζ, t)

d(t)

]
(59)

from which the following expression for P(ζ, t) is obtained:

P(ζ, t) = p̃(θ)d(t) +
ṡ

2bKs

{
−1 +

ζ 2

2s[1 − ζ 2(1 − s−1)]

}
. (60)
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From this, one finds by setting ζ to zero and noting that P(0, t)must vanish as a result of (14),
that

p̃(θ) = ṡ(t)

2bKs(t)d(t)
(61)

hence

P(ζ, t) = ṡ(t)ζ 2

2bK[s(t)]2[1 − ζ 2(1 − s−1)]
. (62)

One then finds the result for the even concentrations by expanding in powers of ζ the right-hand
side of this expression and comparing with (14):

c2j (t) = ṡ(t)

2bK[s(t)]2
{1 − [s(t)]−1}j . (63)

Finally, we evaluate the momentsMn,d(t) andMn,p(t) for the odd and even clusters, which
we define as follows:

Mn,d(t) ≡
∞∑
j=0

(2j + 1)nc2j+1(t) =
(
ζ
∂

∂ζ

)n
D(ζ, t)

∣∣∣∣
ζ=1

(64)

Mn,p(t) ≡
∞∑
j=1

(2j)nc2j (t) =
(
ζ
∂

∂ζ

)n
P (ζ, t)

∣∣∣∣
ζ=1

. (65)

These are easily obtained for small values of n using (55) and (60). In particular, for the zeroth
moments, one finds

M0,d (t) = d(t) = α

1 + αKt
(66)

M0,p(t) = p(t) = ṡ(t)

2bKs(t)
(67)

while for the first moments one finds

M1,d (t) = b

b + 1
+
α + (α − 1)b

b + 1
(1 + αKt)−(b+1) (68)

M1,p(t) = 1

b + 1
− α + (α − 1)b

b + 1
(1 + αKt)−(b+1). (69)

Likewise, for the second moments, one finds

M2,d (t) = αs(t)[3s(t)− 2]

1 + αKt
(70)

M2,p(t) = [4s(t)− 3]ṡ(t)

bK
. (71)

Let us end this section by emphasizing the neatness of the results we have displayed,
which correspond to the ‘mono-bi-disperse’ initial conditions (9). Note in particular the
two formulae, (57) and (63) together with (56), for the concentrations of the odd and even
aggregates, which are much simpler than the corresponding formula for the constant kernel
case, see (12).

4. Large-time and scaling behaviour of the system

Let us now discuss tersely the large-time behaviour of our system, (2) with (7)–(9). We
consider first the behaviour of the concentrations as t → ∞ for fixed j , and then we consider
the behaviour, relevant for scaling, as both t and j diverge. In the following, in order to make



5626 F Calogero and F Leyvraz

the dependence of the results on the various rate constants fully explicit, we shall use both
constants K and L (but never M), and the abbreviation b = L/(4K) in the exponents only.

Let us start by noting that, as t → ∞,

s(t) = KLt

4K + L
[1 + (αKt)−1 + O(t−2) + O(t−(b+1))] (72)

ṡ(t) = KL

4K + L
[1 + O(t−2) + O(t−(b+1))]. (73)

Here we have included two correction terms in the right-hand side, since either one might
dominate, depending on the value of b, see (37).

It is then easily seen, from (57) and (63), that as t → ∞ for fixed j ,

c2j+1(t) = 2−2j

(
2j
j

)√
4K + L

L
(Kt)−3/2

[
1 −

[
3

2
+
(4K + L)αj

L

]
(αKt)−1

+ O(t−2) + O(t−(b+1))

]
(74)

c2j (t) = 2K(4K + L)

L2
(Kt)−2

[
1 −

[
2 +

(4K + L)αj

L

]
(αKt)−1 + O(t−2) + O(t−(b+1))

]
.

(75)

We thus see that, as usual, all concentrations go to zero as t → ∞, but that, at large times,
the odd concentrations dominate over the even ones at any given j . Indeed, as t → ∞,

c2j+1(t)

c2j (t)
= L

2K

(
1 +

4K

L

)−1/2

2−2j

(
2j
j

)
(Kt)1/2[1 + (2αKt)−1 + O(t−2) + O(t−(b+1))].

(76)

Note that this phenomenon is more pronounced if L � K: at first sight this finding might
appear paradoxical, since if L � K the even particles are more reactive than the odd ones,
see (7), hence more even aggregates will be produced. However, in the limit we are considering
now, namely that in which the aggregate size is kept fixed and the time goes to infinity, the
dominant reaction in which Aj is involved is of the type Aj + Ak → Aj+k with k � j .
Indeed, the total number of aggregates d(t) + p(t) decays as 1/t , whereas the total number
of aggregates less than j is bounded from above by 4[D(1 − j−1, t) + P(1 − j−1, t)], which
itself goes as t−3/2. This bound follows from the general inequality

j∑
k=1

ak � 4
∞∑
k=1

ak(1 − j−1)k (77)

valid for any sequence of non-negative real numbers ak and j � 2 a positive integer. However,
it follows directly from (2) that, for j either odd or even, ċj /cj contains two components: one
which involves production of aggregates of size j and which is bounded by the number of
aggregates of size less than j , and another which involves reaction of the aggregates of size
j with arbitrary aggregates, leading to the disappearance of aggregates of odd size j . From
these considerations, it is immediate that the latter reaction dominates in the regime we are now
considering, so we understand that a greater reaction rate leads to a faster decay of aggregates
of size j , as is indeed seen from (76).

It is also remarkable that the main terms in the right-hand sides of (74)–(76) are independent
of the value of α (which we always assume to lie in the range 0 < α � 1); this is in agreement
with a frequently made observation [7,8] that, at large times, the initial conditions are forgotten.

However, the analysis of the behaviour of the concentrations at large times and fixed j
does not provide a complete picture of the behaviour of the system. This is already indicated
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by the large-time expressions of the first few moments of the odd and even concentrations;
indeed, via (72), one easily gets, from (66)–(71), for t → ∞,

M0,d = (Kt)−1[1 − (αKt)−1 + O(t−2)] (78)

M0,p = 2(Lt)−1[1 − (αKt)−1 + O(t−2) + O(t−(b+1))] (79)

M0,d/M0,p = (L/2K)[1 + O(t−2) + O(t−(b+1))] (80)

M1,d =
(

1 +
4K

L

)−1

[1 + O(t−(b+1))] (81)

M1,p =
(

1 +
4L

K

)−1

[1 + O(t−(b+1))] (82)

M1,d/M1,p = [L/(4K)][1 + O(t−(b+1))]. (83)

We thus see that, as t → ∞, the ratios of the first two moments of the odd and even
concentrations tend to a constant. Indeed, it is easy to show (see the appendix) that as t → ∞

Mn,d(t) = (2n)!

2nn!

(
L

4K + L

)n
(Kt)n−1[1 + o(1)] (84)

Mn,p(t) = 2n+1n!K

4K + L

(
L

4K + L

)n−1

(Kt)n−1[1 + o(1)]. (85)

Note the strikingly simple expression for the ratio of these two moments:

Mn,d(t)

Mn,p(t)
= 2−2n−1

(
2n
n

)
L

K
[1 + o(1)] = 1

2
√
πn

L

K
[1 + o(1)] (86)

where the last equality follows from Stirling’s formula, see (91) below and, of course, only
holds for large n. If we therefore measure the relative importance of the odd and even clusters
via their contribution at large times to moments of high-order n, we find that the even clusters
dominate the picture, whereas we had found exactly the opposite in the case of clusters of any
fixed finite size, see (76). This is not surprising, since moments of order n are sensitive to the
presence of clusters of size j with j/s(t) of order n; see the remarks below on the scaling
limit.

Next, to make contact with scaling theory, let us investigate the behaviour of the system
in the scaling limit, namely when t → ∞ and the index of the concentrations grows
proportionately to the ‘typical size’ of the aggregates at time t ,

j ≈ xs(t) ≈ xKLt/(4K + L) (87)

see (72), with x fixed. In particular, let us evaluate in this limit (if it exists) the scaling
function $(x), defined as the limit of j 2cj (t) when both t and j converge with the ratio
x = (4K + L)j/(Lt) kept (approximately) fixed, namely with

j =
[[

KLtx

4K + L

]]
(88)

where the symbol [[y]] denotes the integer part of the real number y.
It is then easily seen that the limit in question does not exist, if the indices j are permitted

to take both odd and even values. Indeed, as we now show, two different scaling functions
must now be introduced, defined as follows:

$d,p(x) = lim
j→∞

[j 2cj (t)] (89)

with j given by (88) and moreover required to be odd (dispari) for $d(x) and even (pari) for
$p(x).
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It is then easy to compute, from the exact expressions (57) and (63), the two scaling
functions $d(x) and $p(x). Using the elementary fact that, in this limit (see (87)),

lim
t→∞{1 − [s(t)]−1}j = e−x (90)

as well as the following consequence of Stirling’s formula:

2−2j

(
2j
j

)
= 1√

πj
[1 + o(1)] (91)

we eventually find

$d(x) = L√
π(4K + L)

x3/2e−x/2 (92)

$p(x) = 2K

4K + L
x2e−x/2. (93)

It is therefore seen that scaling is indeed obeyed when the limit is taken separately over the
even and odd subsequences, but that the scaling function depends on the sequence chosen.
Thus, the strict universality assumed in scaling theory fails, but some considerable generality
is still found in the asymptotic behaviour. In particular, one finds independence from the initial
conditions.

From scaling as stated in (92), (93) one can find the following heuristic argument for the
large-time behaviour of the moments:

Mn,σ (t) ≈
∞∑
j=1

jn−2$σ [j/s(t)] ≈ [s(t)]n−12
∫ ∞

0
dξ ξn−2$σ(ξ). (94)

Here σ stands for either of the indices p or d and the sum in the second term covers the
corresponding range of indices. Note the factor 2 due to the fact that the sum runs over half
the integers in all cases. As is seen from the appendix, these relations are indeed satisfied.

5. Conclusions

To summarize, we have found a new special case of the parity-dependent constant kernel which
can be solved in closed form. The solution can be given in somewhat implicit form for general
initial conditions, but takes a simple explicit form for the case of the ‘mono-bi-disperse’ initial
condition (9). Scaling properties are found to be somewhat unusual: the scaling limit is found
to exist only if the limiting procedure is taken separately over the odd and even integers.

Finally, let us mention that the transformations shown here allow one to study the general
scaling behaviour of the parity-dependent constant kernel model, at least for small values of
the scaling parameter j/s(t). This will be the object of a future publication.

Appendix

In the following, we prove the asymptotic forms for the moments Mn,d(t) and Mn,p(t) given
in (84), (85). To this end we introduce a new variable z instead of ζ , defined as follows:

ζ = ez/s(t). (95)

If one then introduces the transformed functions

D(z, t) = D[ez/s(t), t] (96)

P(z, t) = P [ez/s(t), t] (97)
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one finds from (64), (65) immediately

Mn,d(t) = [s(t)]n
∂

∂zn
D(z, t)

∣∣∣∣
z=0

(98)

Mn,p(t) = [s(t)]n
∂

∂zn
P (z, t)

∣∣∣∣
z=0

. (99)

From (55) and (60) it is found that

D(z, t) = α

1 + αKt

{
1 − 2z + O

[
z2

s(t)

]}−1/2

(100)

P(z, t) = ṡ(t)

2bKs(t)

{
1 − 2z + O

[
z2

s(t)

]}−1

. (101)

From these equations the asymptotic expressions (84) and (85) for the moments follow
using (98) and (99).
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